PDF EPUB
本書有DRM加密保護,需使用HyRead閱讀軟體開啟
  • 數據、謊言與真相:Google資料分析師用大數據揭露人們的真面目
  • 點閱:770
  • 譯自:Everybody lies:big data, new data, and what the Internet can tell us about who we really are
  • 作者: 賽斯.史蒂芬斯-大衛德維茲(Seth Stephens-Davidowitz)著 , 陳琇玲譯
  • 出版社:商周出版
  • 出版年:2017[民106]
  • 集叢名:新商業周刊叢書:653
  • ISBN:978-986-477-355-8 ; 986-477-355-0
  • 格式:PDF,EPUB

內容簡介
 
▍誠品書店當月選書
▍城邦讀書花園當月選書
▍亞馬遜非文學類當月選書

▍亞馬遜 2017 年年度最佳商管書
▍《財星》雜誌當月最佳商業書籍
▍《紐約時報》暢銷書
▍《經濟學人》《紐約郵報》《圖書館期刊》等多家媒體推薦
 
★大數據下的真實人性!
★結合《精準預測》的大量資訊分析、《異數》的敘事風格,以及《蘋果橘子經濟學》的機智風趣。
★ Google 前資料分析師描寫大數據最令人信服、深具挑釁,甚至令人捧腹大笑的一本書!
 
人們謊報在回家途中喝了多少酒,
謊稱自己多常上健身房和新鞋子買多少錢,
就連沒看過的書也說自己有看過。
沒生病卻打電話請病假,說再聯絡卻不再聯絡。
人們說事情跟你無關,但其實就跟你有關。
明明不愛你,卻騙你說愛你。
心情不好時卻說自己很開心,
明明喜歡男人,卻說自己喜歡女人。
人們對朋友說謊、對老闆說謊、對子女說謊、對父母說謊、
對醫生說謊、對老公說謊、對老婆說謊,也對自己說謊。
作者證明大數據提供一種前所未有的方式,
讓我們窺探人們的內心世界,
因為人們透過鍵盤才會在無意中私密地坦承千奇百怪的事情。
 
歐巴馬當選表示美國的種族歧視緩解了?錯!
黑人球員進入職業運動殿堂是貧困孩子奮發向上的勵志故事?大部分不是!
挑選賽馬最重要的參考依據是血統?不!
父母對待兒子和女兒的態度不一樣嗎?不一樣!
佛洛伊德說夢境中的事物都有性意涵,這是對的嗎?很可能不對!
 
回答問卷、民意調查、接受採訪、臉書貼文
──我們都有可能說謊;
但是你的搜尋行為可不會說謊!
大數據,呈現我們每個人、每秒鐘無意識的反射!
 
無論是嚴肅或日常的議題,如今我們已有途徑能解答不久之前因種種原因(例如缺乏數據,或單純不敢提問)還未能解答的問題。
 
四年前,作者還是哈佛經濟系博士班學生,正努力找尋論文題目。有天早上,他發現 Google 基本上已為所有研究者備好所需的資料,也就是說,Google 是全球人類興趣資料庫的集中地,這些資料簡直就是任何對人類行為感興趣的人夢寐以求的:從我們每個人每天的網路搜尋中找到行為模式。然而,這些資料早已存在好些時日,卻從未有任何報章雜誌對其有過深刻的報導與研究。
 
作者深入研究 Google、推特(Twitter)、臉書(Facebook)、警察局紀錄、電影票收據、維基百科、色情網站、棒球球員個人成績表,和你想像不到的數位與傳統資料來源之後,發現這些資料來源有個共通的特點:他們提供的是大數據,亦即我們每個人每秒鐘無意識的反射,而非根據民意調查而來的一小部分民眾的意見樣本。
 
網路上的新數據,也就是數十億人在 Google、社群媒體、約會網站,甚至色情網站留下的數位足跡,最後會揭穿事實真相。這些不僅是新類型的數據,更有些是「誠實」的數據,在匿名機制下,彷彿四下無人時,人們才會吐露自己最真實的想法,以及真正想問的尷尬問題。這類數據就像數位版的「誠實豆沙包」,讓人們表達出自己的無性婚姻、個人精神健康問題、不安全感、受虐,以及對黑人或穆斯林的憎惡。透過分析這座數字金礦,我們現在可以了解人們真正在想什麼,真正想要什麼,以及真正做了什麼。
 
作者在本書中展示,要從數據中獲得寶貴資訊,最關鍵的一點是:你必須問對問題。而大數據有四大關鍵力量可以協助:
 
⒈大數據能讓你將數據切割分解,讓你見微知著及獲得具體的見解。
⒉新的資料來源通常包括新類型的變數,比現存變數更能幫助我們了解複雜關係,並充分利用。
⒊新的數位資訊能提供我們生活的真實樣貌,而非我們希望自己呈現給外人的形象。
⒋大數據易於與實驗結合,使我們能測試因果關係,而非僅是相關性。
 
進入網路新時代的這幾十年以來,我們在健康、道德、勞動市場、商業、恐怖主義、性別,以及種族等議題上有長足的認識。我們的數位足跡已把整個世界變成一個實驗室,本書將呈現出這場數位革命如何為我們每個人打開找尋隱藏真理的大門,一窺人們的內心世界,提出大數據時代真正的洞見。
 
本書以極具啟發性的觀點解讀大數據,並以各式各樣有趣的案例忠實呈現網路世界與當代社會的現況,讓我們得以重新認識自己與這個世界。
 
專業人士推薦
 
▍苗博雅(《阿苗帶風向》主持人)專文推薦
▍張鐵志(文化與社會趨勢觀察家)、馮勃翰(台大經濟系副教授)誠實推薦
 
專業人士推薦語
 
▍《阿苗帶風向》主持人苗博雅:
「透過作者風趣的文筆,我們知道大數據搭配電腦運算,有嶄新的力量……作者雖然醉心於以新穎方式分析海量數據,但他仍然在書中誠實地提醒讀者大數據的各種『能與不能』……本書的優點:簡明、幽默、易懂。只要讀者能夠看到最後一頁,勢必有所收穫。」
 
▍哈佛大學榮譽退休校長暨諾頓講座教授勞倫斯‧桑默斯(Lawrence Summers):
「《蘋果橘子經濟學》(Freakonomics)和《魔球》(Moneyball)都要靠邊站了。這本精彩傑作是說明大數據結合聰明才智如何撼動世界的最佳示範。閱讀這本好書,會讓你以嶄新的方式看待生活。」
 
▍《人性中的良善天使》作者史蒂芬‧平克(Steven Pinker):
「研究思維的一種嶄新方式,史蒂芬斯—大衛德維茲的發現一次又一次地顛覆我對自己國家和同胞先入為主的看法……這本書真是太令人著迷了。」
 
▍《蘋果橘子經濟學》合著者史蒂芬‧李維特(Steven Levitt):
「針對大數據揭露人們日常生活真相做出絕頂聰明又機鋒處處的探索。史蒂芬斯—大衛德維茲是我見過最會善用數據說故事的高手。」
 
▍《我們是誰?大數據下的人類行為觀察》作者克里斯汀‧魯德(Christian Rudder):
「對於我們生活的數據進行振奮人心又引人入勝的審視……大數據會徹底推翻你對人們的既定印象,真相會讓你畏縮、暗自竊笑並搖頭嘆息。」
 
▍《注意力商人》(The Attention Merchants)作者吳修銘(Tim Wu):
「《數據、謊言與真相》仰賴大數據迅速拆穿我們自以為文明的假象。一本讓人既著迷又震驚,時而駭人聽聞的傑作。最棒的是,讓真相一覽無遺。」
 
▍史丹佛大學經濟學教授拉吉‧切提(Raj Chetty):
「《蘋果橘子經濟學》的增強版,這本書顯示大數據如何能針對重要有趣的問題,提供我們驚人的新答案。史蒂芬斯—大衛德維茲以機智俐落的方式提供數據分析,為構成社會科學的大數據提供精闢出色的介紹。 」
 
▍拉扎德投資銀行(Lazard)董事總經理暨前國會預算辦公室主任彼得‧奧薩格(Peter Orszag):
「傑作!!!作者妙筆生花敘述透過大數據進行的一場寓教於樂之旅。這場旅程剛好為人類行為本身提出一個重要的新觀點。如果你想了解我們居住的世界正在發生什麼事,甚至是了解你的友人究竟怎麼回事,你就該從頭到尾看完這本書。」


作者簡介
 
賽斯‧史蒂芬斯—大衛德維茲Seth Stephens-Davidowitz
《紐約時報》撰稿人暨華頓商學院客座講師,曾為Google數據科學家。史丹佛大學哲學系畢,哈佛大學優等生榮譽學會(Phi Beta Kappa)成員暨經濟學博士,目前定居紐約市。史蒂芬斯—大衛德維茲的研究使用新的大數據來源,揭露人們潛藏的行為和態度,並已刊登在《公共經濟學期刊》(Journal of Public Economics)等聲望卓著的出版物。
 

譯者簡介
 
陳琇玲Joyce Chen
美國密蘇里大學工管碩士,曾任大學講師、軟體中文化及影片翻譯譯者、Alcatel Telecom主任稽核師。已出版譯作百餘冊並多次獲得金書獎殊榮,現以翻譯為樂並習畫自娛。重要譯作包括:《搜尋未來》《2017-2019投資大進擊》《物聯網革命》《引爆會員經濟》《精準預測時代》《人工智慧的未來》等。
 
相關著作:《2017-2019投資大進擊:全球趨勢專家首次揭露一輩子一次的投資良機》《OQ:哈佛商學院最有成效的經營課》《不必多花錢,也有超強競爭力!》《別再拚命討好顧客——專心替顧客省麻煩,回購比例就能輕鬆提高94%!》《川普、清崎點石成金》《用十張地圖看懂全球政經局勢》


  • 〔推薦序〕 現象、真相與解方──提到「大數據」,你想到什麼?/苗博雅(第4頁)
  • 〔推薦序〕 大數據成了窺探你內心的新窗口/史蒂芬.平克(第12頁)
  • 前言 川普勝選讓你跌破眼鏡?那是你沒看懂數據──歐巴馬勝選代表種族歧視已經好轉?看看「黑鬼」的搜尋次數好嗎?(第16頁)
  • 第一篇 管他大數據還是小數據(第45頁)
    • 第一章 別讓直覺扯你後腿──是什麼造就了NBA球星?(第46頁)
  • 第二篇 大數據的驚人力量(第69頁)
    • 第二章 佛洛伊德說的正確嗎?──拼錯字背後隱藏的慾望(第70頁)
    • 第三章 怎樣的數據算是大數據?──每個年代都可以算出「平均長相」(第83頁)
    • 第四章 躲在線上的真相──你永遠問不出來的同志比例、仇恨言論、性隱私和顧客的腦袋(第144頁)
    • 第五章 我們周遭發生了什麼事?──逃稅最嚴重的城市(第219頁)
    • 第六章 整個世界,都是我的實驗室──怎樣的頭條標題吸引人?(第270頁)
  • 第三篇 小心面對大數據!(第313頁)
    • 第七章 大數據,大垃圾?──大數據看起來很萬能,但別拿它來算明牌!(第314頁)
    • 第八章 愈多數據,愈多問題?──我可能因大數據而無法借款?(第331頁)
  • 結論 大數據告訴我,很少人看到最後一頁(第347頁)
  • 謝詞(第363頁)
紙本書 NT$ 420
單本電子書
NT$ 290

還沒安裝 HyRead 3 嗎?馬上免費安裝~
QR Code